Ampera

Note 4: Test conditions: IDC, RL = 12

Note 5: Switching from VDRM = 1000V

Note 6: In addition to 0.2F and 20snubber circuit

Features:

- All diffused silicone junctions.
- Standard recovery time for phase control applications.
- Module package.
- Thick copper base plate.
- Isolated cooling, rated up to 3500 VRMS
- Easy mounting to heat sink
- Heat sink grounded.

Voltage

Parameter	**Symbol**	**Rating**	**Units**
Maximum Repetitive Off-State Voltage & Maximum Repetitive Reverse Voltage | V_{DRM}, V_{RVM} | 1200 ~ 1800 | Volts
Maximum non repetitive Surge of Reverse Voltage | V_{VRM}, $V_{\text{VRM} + 100}$ | 1200 ~ 1800 | Volts
Critical rate of rising of off-state Voltage, Linear to 80% of V_{VRM} | dv/dt | 500 | V/μs

Note 1: TJ = 25°C. Note 2: TJ = 125°C.

Specifying voltage: 1400V, PSKT250N14 1600V, PSKT250N16 Above 1800V inquire about availability.

Gate

Parameter	**Symbol**	**Rating**	**Units**
Gate Trigger Voltage | V_{GT} | 2.8 ~ 3.5 | Volts
Maximum Gate Trigger Current | I_{GTM}, I_{GTM}/ | 500 | mA
Minimum Forward Current to Latch on-state | I_{FM} | 500 | mA
Maximum permissible Gate Voltage not to Trigger | V_{GTM}, V_{GTM}/ | 250 | mV
Maximum permissible Gate Current not to Trigger | I_{GTM}, $I_{\text{GTM}}}$/ | 5 | mA
Maximum peak non repetitive Gate Voltage | V_{GM} | 8 | Volts
Maximum Negative Gate Voltage | V_{GM} | 5 | Volts
Maximum non repetitive Gate Current | I_{GTM}, I_{GTM}/ | 3 | Amperes
Average Gate Power (recommended) | P_{GAVE} | 0.9 ~ 2.0 | Watts

Note 1: TJ = 25°C. Note 2: TJ = 125°C.
Note 3: Rectangular pulse, $t_b \leq 8.3$ ms.
Note 4: Rectangular $-V_{\text{DC}}$ pulse, $t_b \leq 8.3$ ms.
Note 5: Test conditions: IDC, RL = 12Ω.

Amperage

Parameter	**Symbol**	**Rating**	**Units**
Maximum, Average, On-state Current | $I_{\text{ON(AVE)}}$, $I_{\text{ON(AVE)}}$/ | 250 | Amperes
Maximun, RMS, On-state Current | I_{RMS}, I_{RMS}/ | 395 | Amperes
Maximum non repetitive, Surge. On state, Current, with no reverse voltage reapplied | I_{TM} | 0% V_{RMM}, 3.9 | kA
Maximum non repetitive, Surge, On state, Current, with maximum reverse voltage reapplied, | I_{TM} | 100% V_{RMM}, 2.8 | kA
Critical rate of rising On-state Current, non repetitive | dI/dt | 150 | A/μs
Holding Current | I_{H} | 30 ~ 100 | mA
Maximum On State Voltage drop | V_{TM} | 1.65 | V
Fuse's absolute maximum f^2t with no reverse voltage | F_t, 0% V_{RMM} | 69 | kA
Fuse's absolute maximum f^2t with up to 80% of V_{RMM} | f^2t, ≤ 80% V_{RMM} | 48.8 | kA

Note 1: TJ = 25°C. Note 2: TJ = 125°C.
Note 3: 180°C Conduction, 60 Hz, Sinewave.
Note 4: Test conditions: IDC, RL = 12Ω.
Note 5: Switching from V_{DRM} = 1000V.
Note 6: In addition to 0.2F and 20snubber circuit.